Systems Engineering: Three New Approaches

by Dr. Richard P. Evans

This paper describes three new systems engineering
approaches: System Assessments, a Systems Inte-
gration (SI) program, and an Engineering Baseline
System (EBS).

Some of the key features reported for System
Assessments are an Assessment Control Board
(ACB), as a critical complement to the traditional
Configuration (or Change) Control Board (CCB),
with associated one-page Assessment Plans (APs),
and one-page Assessment Reports (ARs).

Primary characteristics of a Systems Integration (SI)
program include the continuous acquisition of non-
attribution System Reports (SRs); the structure of
Candidate Program Initiatives (CPIs) for intermedi-
ate system planning; the application of small (3-5)
consolidated customer/user/stakeholder and devel-
oper engineers in composite, non-attribution, altruis-
tic Problem Area (PA) teams for system engineering
review, and the use of Round Tables of participants
in extracurricular roles, like INCOSE referees, to
provide structured assessment support.

The Engineering Baseline System (EBS) addresses
the opportunities/problems introduced by the recent
widespread use of personal computers by engineers,
the attendant separate and typically uncontrolled and
non-standard structuring and naming of file-based
system elements, and the accompanying associa-
tions, as new adjuncts to what had been exclusively
a page-based environment. That uncontrolled and
non-common creation and use of multiple separate
file-based environments, and accompanying associa-
tions, brought on a loss of the standardized structure,
naming, and change management that was previous-
ly maintained by the page-based environment—with
its fixed and controlled page structure, page number,
and page date. ‘

45

The EBS paradigm includes standardized (thus com-
mon) system element structuring and naming (by a
six-digit system number—that is a sequence number
to sustain audits—and that has a six-digit suffix to sup-
port the assignment of unique system numbers to that
span of separate system files. A system number has the
format <<xxxxxx.yyyyyy>>. The xxxxxx prefix is a
sequence number that is unique within the file or sys-
tem component where the system element is main-
tained; and the yyyyyy suffix identifies that file. When
a system element in a file changes, the next available
system number prefix within that file is assigned; the
suffix is fixed. All previous system numbers (prefixes)
associated with a given system element are retained.

System numbers are unique for each system element,
including specification elements, software code,
drawings, and hardware elements. System numbers
and associated tags, maintained in separate two-col-
umn ASCII-based index files, can be assigned by
system developers when they create new system ele-
ments, without using specialized tools, or they can be
assigned using database or CASE tool systems.

Added EBS features include the use of plain ASCII
two-column index files for all manner of associa-
tions—even between code modules and user manu-
als—prepared, used and created by any and all engi-
neers, anywhere, any time, for any reason—in con-
trast to the use of a central specialty database system.

That EBS element addresses shortcomings in the
file-based approaches that are typically present in the
current CASE-type environments. These approach-
es, while overcoming some of the page-based issues,
but nevertheless based on the use of a few large, spe-
cialty tools, have also created problems and limita-
tions of their own—particularly in the limited scope
of those who are able to effectively participate.

Systems Engineering Principles

Three new methodologies are presented as systems
engineering approaches in order to affect a shift
from simply engineering to methodologies for engi-
neering.

An example of one of the advantages of such a trans-
formation—Ilike a Laplace or Fourier transformation
in addressing signal processing—is the following
passage by Tully (1989) and Thome (1993), that is
also illustrated in Figure 1, on the topic of systems
engineering:

Characteristic:
Predict systems behavior

Application of
Systems Approach

Domain:
Systems problems Independent of
certain technologies

Figure 1. Systems Engineering—
Three dimensions.

Systems Engineering consists of applying a systems
approach to the engineering of systems. Its domain is
the engineering of solutions to systems problems
independent of employing a certain technology for
realizing systems functions and properties. A charac-
teristic of systems engineering is that it has to predict
systems behavior and to design systems structure so
that emergent behavior can be provided for and con-
trolled within acceptable and desirable bounds.

In that approach, the authors address systems engi-
neering along three separate dimensions that are
more amenable to understanding and insight, as they
transform in a sense from only engineering per se.
That transform approach enables a separate consid-
eration of each of the three dimensions, rather than
addressing engineering as a whole. In the case of the

46

dimension of application of the systems approach,
for example, the transform effects a shift from the
topic of engineering, to a separate consideration of
the systems approach.

The authors, who also cite (Jenkins 1969 and
Churchman 1989), then apply the same transform
technique in considering the systems approach in the
context of the following three primary perspectives,
attributes of systems thinking, or ways of thinking
about the engineering of computer-based systems, as
depicted in Figure 2. The effective use of a three-
dimensional framework for describing systems engi-
neering and its various facets is similarly cited by
Sage (1992), Hall (1969), and Warfield (1972).

Highest level of
abstraction

Multiple
perspectives

Whole is greater than the sum of
the parts Emergent properties

Figure 2. Systems Approach—Three dimensions
(Perspectives, Ways of System Thinking)

The three new systems engineering approaches
depicted in Figure 3, and presented in further detail
in Sections 1, 2 and 3, respectively, are elements in
this framework of systems engineering.

System Assessments and an ACB

Systems engineering approaches typically include a
basic program control board known as the
Configuration (or Change) Control Board (CCB).
CCBs act after-the-fact in the sense that they receive
formal change proposals in specific formats, some of
which may have been in preparation for months. An
Assessment Control Board (ACB) serves as a com-
plementary and contrasting control board.

System Assessments
Assessment Control
Board (ACB)

Systems Integration (SI)
Program

Engineering baselines (file-based
environment)

Figure 3. Three New Systems Engineering
Approaches.

There is a need for both assessment control (ACB)
and configuration control (CCB). Assessments make
discoveries, a CCB disciplines the application of
those discoveries. An ACB anticipates and plans, it
operates up-front—that increases its leverage; a
CCB operates after the fact and regulates. While
CCBs are essential for change and implementation
control, there is an equal need for the balance of
assessment. An ACB, in contrast and as a comple-
ment to a CCB, is focused on the plans for the initi-
ation of work, with a concentration on the plans for
its assessment. In that sense, an ACB is focused on
proposed plans and process, in contrast to a CCB
emphasis on details of proposed change and the con-
trol of its implementation.

As illustrated in Figure 4, an ACB complements a
CCB by exercising control of the initiation of work,
including trade studies that lead to proposed changes
for CCB consideration. The control of work initia-
tion by an ACB includes the plans for, and the results
of, the work assessment. An ACB focus is on assur-
ing the operation of ACBs at all levels of the engi-
neering effort, not just at the program office level.
An ACB’s goal is to assure a whole set of ACBs so
that every engineer has the privilege to undertake
their labors in the context of an Assessment Plan
approved at an appropriate level by those to whom
they also have the opportunity to provide reports of
its application efficiently and effectively.

47

ACB Operation

P] AR | !
AP
............ The Work "~ CCB Operation

! Propase
2 _cn:’fn’,ngeqJ

Figure 4. ACB and CCB Operations.

The initiation of work is controlled by an Initiation
Plan (IP) approved by the ACB. An attachment to the
IP is the one-page Assessment Plan (AP). Assess-
ment results are similarly reported in typically one-
page Assessment Reports (ARs). APs typically
address the following:

Scope: The work and the associated products to be
assessed.

Assessment Criteria: The criteria to be applied in
assessing the work and the products. This is one of
the hardest elements of a plan to devise, and accord-
ingly one of the most critical program controls.

Approach: How will the assessment itself be
assessed, how will the assessment be conducted—
the format and process: who will be on the sepa-
rate/independent assessment team—their names?

Schedule and cost: the assessment milestones and
the proposed investment in assessment.

System Integration (SI) Program

A parallel methodology that can be applied to
strengthen the CCB is for the ACB to also sponsor an
SI program, as a complement to final CCB program
control. The objective of an SI Program is to assure
that proposed changes are well prepared for CCB
consideration. Changes may be changes to the con-
figuration of the program architecture and schedule,
as well as a change to the design. There are three pri-
mary dimensions of an SI program as illustrated in

Figure 5, Identification, Investigation, and
Implementation:
| Identification .‘_.‘@___ﬁ
; i |
AN ! '
/Round . _ _ | . l |
" Tables ﬁnvesngatnon | |
. . i
o |
' —
Implementation

Figure 5. ACB Sponsored and CCB-Controlled SI
Program

The driving influence of the SI Program is in the first
two “I’s: Identification and Investigation—those
that are the most up-front. The Investigation process
also has, as a central feature, the use of Round Tables
(RTs), as a panel of three to five experts, to serve like
INCOSE referees as an unfunded assessment team
for planned investigations.

The SI Program structure includes four elements:
System Reports (SRs), Candidate Program Initiatives
(CPIs), Program Objectives (POs), and Problem
Area (PA) Teams. All are supported, as depicted in
Figure 6, by an SI Database,

System Reports (SRs) are individually numbered
records of every problem, suggestion, insight, or
idea. An SI Database is built on the ever-accumulat-
ing set of SRs maintained throughout the life of the
system. SRs are recorded as symptoms, so to speak,
without prejudice. They are not filtered by any crite-
ria, such as who said, or how they were reported, or
whether they were validated. They are accumulated
and honored by a unique SR Number that is never
reused. Thus, while the SR may be placed in an inac-
tive file, its identity, its number, always remains
unique to that SR.

Problem Area (PA) teams assess the overall pro-
gram handling of the SRs. The team members are
drawn from both the user and the developer. They
serve as professional collateral assignments, not as

48

R System
eports (SRs) i

Candidate Program
(S:_F?ﬁ Initiatives (CPIs)

Program
Objectives (POs)

CPI - 001 T
7 POs
> ______ EPO ~007 |

________ s (PAs)—o assess_ i

s

SR - 002
SR - 003

f—

CPI - 003 | PO-002i
! it
—_—

i Sl Database

Figure 6. Four-part SI Program.

representatives of their parent organization’s man-
agement priorities or interests. The PA teams assess;
they do not have responsibility for solutions. They
recommend initiatives, but they do not sponsor
changes—with the attendant responsibility to imple-
ment approved changes. The PAs monitor the
process design and operation.

Candidate Program Initiatives (CPIs) are tempo-
rary homes for potential program initiatives. CPIs
are unfunded and do not have a designated manage-
ment responsibility. They are the initial planning
framework, a neutral territory, for the allocation of
SRs. Note that SRs are allocated redundantly, with
one primary allocation and multiple secondary
assignments.

Program Objectives (POs) are funded, have
assigned implementation responsibility, and are the
formal vehicles for configuration change. POs are
assembled as the implementation packages from the
array of CPIs. They may be one entire CPI or include
portions of many.

Engineering Baseline System (EBS)

The EBS methodology provides a new paradigm for
system element identification, application, associa-
tion, and control in the engineering of computer-
based systems. Prior to the increasingly widespread
use of computers by all engineers, system elements
were only defined and controlled in a page-based

environment where the page structure, number, and
date established system elements. With computers
now available to, and in use by, essentially all engi-
neers, a file-based environment is being added to the
page-based foundation. The added file-based capa-
bility has both new promise as well as new risk; the
EBS methodology addresses both. The EBS para-
digm capitalizes on the file approach while address-
ing shortcomings in the typical CASE-type
approaches to a file-based capability. Those systems,
based on the use of a few large, central, specialty
tools have, while overcoming some of the page-
based-only issues, also created problems and limita-
tions of their own. EBS features include:

1. File-based engineering baselines: prepared and
controlled day-by-day in a distributed manage-
ment framework.

2. Standard common structure of all system ele-
ments: controlled and defined at the basic primi-
tive level as stand-alone, machine-processable
elements. These are file-based structures that are
structured from the page-based foundation.

3. Centrally assigned blocks of standard-format six-
digit (auditable) system numbers that are main-
tained automatically in strict journal number
sequence for every system element—whether
requirements specifications, designs, test cases,
maintenance documents, code modules, hard-
ware components, budget elements, schedule
milestones, or user manuals.

4. Engineering baseline (eb) numbers, and engi-
neering change (ec) numbers, with associations
to system numbers maintained in plain, two-col-
umn, ASCII index files for each primitive system
element.

5. Plain ASCII two-column index files for all types
of associations that are prepared, used and creat-
ed by any and all engineers, anywhere, anytime,
and for any purpose. These contrast to the use of
a central specialty database system. EBS index
files, prepared as individual two-column ASCII
files, are thus not only amenable to being aggre-
gated into larger sets of other plain ASCII files,

they may also be aggregated into centralized,
specialty, database-oriented software packages.
Therefore, while not in any way constraining the
use of specialty database-oriented tracing
approaches, the index files actually enable them
by enabling wide preparation and use outside of,
and thus in support of, central database-oriented
systems. On the other hand, using only specialty
software applications, rather than ASCII index
files to create as well as maintain associations,
restricts visibility into those associations to either
hard copy tables, or by direct use of the special-
ty software that created the table. Individual
index files, however, remain visible to any and all
for use, modification, extension, and review, and
on any machine, and simultaneously also provide
the needed inputs for a central database reposito-
ry or report generator, as may be desired.

Problem Areas—Criteria for EBS Methodology
Evaluation: The problem areas in current practice
for the engineering of computer-based systems may
be summarized in the following top-ten set of inter-
related attributes. They are separate, but, as shown in
Figure 7, they aggregate along three dimensions of
system engineering needs (those that support,
enable, and sustain all three dimensions are listed at
the focus of the three axes):

* Associations—paired linkages of system ele-

ments.
Associations
7,9, 10
1,2, 4,6 8
Change
3,5
Baselines

Figure 7. Three dimensions of systems engineering
need as addressed by an EBS.

10.

* Change management support, the identifica-
tion and recording of changes, the associated
rationale, and the specifics of new, changed
and deleted system elements.

* Engineering baselines—multiple controlled
baselines, maintained in distributed manage-
ment environments, by, for and of the engi-
neering.

Structure and granularity—common structure
and system element number

Autonomy—stand-alone system elements

Timeliness—controlled engineering baselines as
needed

Machine processability—ASCII files of systems
elements and paired association

Distributed management—engineering groups
with control of their own baselines—yet all inte-
gratable

Auditability—system numbers as sequence num-
bers

Self-rule—creation of paired association index
files on the spot

Independence—non-dependence on hard copy
only change definition

Aggregations—integration to one common data-
base of separately controlled files—enabled by
suffix block allocations

Associations—integration of all associations—
ASCII paired index files

Structure and Granularity: The need is for
controlled standardization of structure and nam-
ing/numbering to the lowest level; individual,
uniquely numbered system elements that can
also be separately processed in machines; CASE
environments. Current ECBS controls are typi-

50

cally applied solely to formatted pages that are
not machine processable without uncontrolled
changes in structure. Current control practice
also uses a framework of sections, such as
3.2.4.2.6, that often span sets of many otherwise
separate requirements, specifications, and design
elements. Further, current practice generally
employs compound statements and bulleted and
tabular data that are thus neither lowest-level
system elements nor autonomous and stand-
alone, as discussed below.

Autonomy: The ECBS methodology need is for
stand-alone (as well as granular) system ele-
ments, that carry, with their unique name/num-
ber, all associated context and also the associat-
ed system/management information, including
changes, allocations, associations/integration,
and other system associations.

Timeliness: Effective engineering typically
needs controlled file-based engineering baselines
day-by-day. Current ECBS practice generally
only provides formal page-based controlled
baselines, and at release intervals that often span
months, even years. Individual engineering
activities usually need day-by-day controlled
baselines for the interactions among their per-
sonnel, who are daily working on many tentative
what-if type alternative assessments, designs,
trade-offs, and other systems engineering consid-
erations. They need day-to-day engineering
baselines that are typically controlled among
themselves. While those baselines are not the
final contract type baselines that are eventually
formally established by a CCB, equally formal
control within their particular engineering activi-
ty is needed by them as they conduct their own
iterative assessments and planning: the engineer-
ing.

Machine processability: The need is for system
descriptions, whether specifications, designs,
hardware components, software modules, etc., in
ASCII non-formatted files—without dependence
on features that are not machine-processable in
ASCII files—such as tables, graphics, footnotes,

endnotes, italics, bold and indents. Tabular data
is particularly susceptible to lack of machine
processability as well as the attendant loss of
automated auditability and change control. The
same or similar data are often included in a vari-
ety of tables, with differing scope, format, and
content. Thus change control, and even interface
control, are difficult, if not precluded altogether.
A controlled change to one table is not readily
carried over to the needed changes in other tables
as well as non-tabular system elements that
address similar data, but in different formats and
contexts.

. Distributed control: Each engineering activi-
ty/organization needs to be enabled and responsi-
ble, to maintain a separate set of their own engi-
neering baselines, yet integratable into a system
whole. Current practice typically limits the
authorization to establish baselines to a few cen-
tralized personnel using a large and unique spe-
cialty CASE tool or database.

. Auditability: Names/numbers are needed that
are centrally controlled, in a standard format (six
digits) and strictly sequential—so that any miss-
ing or redundant number is clearly visible.
Current ECBS practice relies on
numbering/naming of system elements only by
sections. They may include as many as 50 sepa-
rate stand-alone system elements, with variable
size numbers such as 3.4.2.1.3.7, and without
separate, individual system numbers, of a fixed
size number of characters such as 000357. In that
framework, the only available names, for each
system element is, for example, neither specific
to each separate system element, nor is it a
sequenced number to support audits. It is never
assured, for example, that 3.1.6 would immedi-
ately follow 3.1.5.3.7.2; thus numbers may be
missed. A sample of that inadequate page-based
approach, along with its other association defi-
ciencies, is presented in Table 1.

. Self-rule: All engineers need to be both enabled
as well as responsible to establish and maintain
associations and dependencies—using the stan-

51

dard six-digit name/number—for all system ele-
ments they create and use. Current practice typi-
cally limits the establishment of associations to
those entered by a few centralized personnel
using a large and unique specialty CASE tool or
database.

Document. | Function Associated
Segment
3172 Provide on-line 3.225
help 3.26.22
Table 1. Sample Page-based (Non-EBS-based)

Traces.

8. Independence from page-only change control:
Association of change data in each granular
stand-alone name/number is needed. Current
change management is typically based solely on
change pages, without change definition embed-
ded (by index files) with each separate stand-
alone system element. Current controls are typi-
cally applied solely to formatted documentation
that is not machine processable without uncon-
trolled changes in structure and associated
change history.

As possibly one of the most significant benefits of
the EBS paradigm for the engineering of computer-
based system, change information is explicitly estab-
lished and recorded for each system element, and
that is maintained in individual machine-processable
files and the associated two-column ASCII index
files.

In the present practice on several large-scale systems
currently in development, a major deficiency exists
in the processing of formally approved changes,
called RFCs, for Requests for Change. RFCs are
allocated in composite sets to new Versions of for-
mally controlled specifications, designs, budgets,
schedules, test plans, installation manuals, etc. Each
Version or Release, typically issued only after
months of review by a CCB, normally includes sev-
eral RFCs, with each RFC containing up to 10 pages,
and with as many as 20 separate changes (system
elements) per page. The RFCs are not structured to

primitive system elements for machine processing,
and there is no unique identifier (like a system num-
ber) for each such basic change element. Further,
there is no association index file (two-column paired
associations between system numbers) for the indi-
vidual changes in each RFC and each new revised
system element in the composite Version/Release.

That deficiency is aggravated when the engineers
remove the new information from the pages and
enter them into machines. At that point, the non-
association is compounded by the loss of the page
date, number and structuring.

The following is an example of both the EBS
approach to automatically recording (in two-column
index files) changes to a given system element, and
typical optional display formats. All system element
information, including descriptions and index-file
associations, is maintained in individual two-column
index files. But various displays, such as the follow-
ing sample, may be generated with various data
aggregated on a page/report. In this case, para 3.2.1
was structured from the original in the page-based
environment into two system elements in the file-
based environment. Each was assigned a separate
system number: 000002 and 000003, respectively.
The second of those elements was altered by an engi-
neering change (ec) action designated as <ec0827>.
Please note that ec’s may refer to formal RFCs or to
any other controlled change process—especially
those operated by the engineering staff as interim
what-if changes. In the process, the engineering
baseline (eb) increased from <eb0002> to <eb0003>.
In addition, that new element was assigned the addi-
tional system number of <<000643.900001>>.
Please note that the 2. <n2885> are for file ID (line
number) “2”, in the file named <n2885>.

2. <n2885> <eb0002> 3.2.1 The segment shall pro-
vide communications with the network through
the Front End (FE) <<000002.900001>>.

<n2885> <eb0003> <ec0827> 3.2.1 The seg-
ment shall provide communications with the net-
work through the Back End (BE)
<<000003.900001>> <<000643.900001>>.

52

9. Aggregations: Use of system numbers with a
six-digit suffix is needed to enable distributed
baseline generation and control—yet integration
(no conflicts in system numbers) into a single
program database—aggregation of all manage-
ment information into composite database sets of
any needed scope. Allocation of “blocks” of suf-
fixes (the “y”) sustains this need: XXXXXX.yyyyyy

10. Associations—integrations: Each separate sys-
tem element needs to be associated with all other
related system elements by reference to its stan-
dard and unique six-digit system number/
name—in paired ASCII index files—that engi-
neers create without reference to any database.

Summary

System Assessment: An Assessment Control Board
(ACB), with a focus on Initiation Plans (IPs), their
associated one-page Assessment Plans (APs) and
Assessment Reports (ARs), can be essential comple-
ments to CCB operations. CCBs are essentially total-
ly after the fact. The resources (both time and
money) to prepare proposed changes for CCB con-
sideration have generally already been invested by
the time the CCB receives the results. The operation
of an ACB is management working up front, where
the leverage is greatest. The use of IPs, APs and ARs
at all organizational levels, operated in essence by
increasingly lower-level ACBs, is a key feature of
the ACB approach. The ACB influence of how work
is to be assessed is a prime lever on what is done.
The criteria for goodness and the names of those who
will prepare assessment reports are key areas for
management influence.

Systems Integration (SI) Program: Operation of an
engineering planning process, as an SI Program,
based on SRs as the primitives for all planning, is a
potential added aid that the ACB can sponsor as a
further complement to the CCB. An SI Program uses
bipartisan Problem Area (PA) teams that include
both customer and developer members. The PAs,
working on a low duty cycle, an hour a week or less,
concern themselves with the planning to address
their assigned SRs.

Engineering Baseline System (EBS): Engineering
baselines represent a new and needed paradigm for
controlled visibility and traceability in systems engi-
neering. The EBS addresses the opportunities and
problems introduced by the recent advent of person-
al computers in use by all engineers and the attendant
separate and typically uncontrolled and non-standard
structuring and naming of file-based system ele-
ments and associated associations as new adjuncts to
what was previously exclusively maintained as a
page-based environment.

The EBS is more a methodological framework than
a toolset. The EBS software is but one implementa-
tion of the approach. It exists to make real the prin-
ciples; but the idea, the approach, and the concepts
are essential. Not only is most of the so-called EBS
conducted outside of any special software (engi-
neers creating their own two-column index files in
any type of tool—including paper and pencil), sys-
tem development firms may quite readily construct
their own software implementations of an EBS, once
they appreciate and determine to employ the princi-
ples.

Acknowledgments: While there have been many
who have assisted in the development of the
methodologies described here, this article is the
sole responsibility of the author, it does not reflect
the views or opinions of any organizational affilia-
tions.

53

References

Churchman, C. W. “Der Systemanatz und seine
Feind,” Translated from the American “The
Systems Approach and its Enemies,” commented
and introduced by Werner Ulrich, Verlag Paul
Hapt, Bern and Stuttgart, 1981.

Hall, Arthur D., “Three-Dimensional Morphology of
Systems Engineering,” IEEE Transactions on
Systems, Science, and Cybernetics, Vol SSC-5,
pp 156-160, Apr 1969.

Jenkins, G. M., “The Systems Approach,” Journal of
Systems Engineering, 1 (1969) 3-49.

Sage, Andrew P., Systems Engineering, John Wiley
& Sons, New York, 1992.

Thome, Bernhard, (ed.), Systems Engineering:
Principles and Practices of Computer-based
Systems Engineering, John Wiley & Sons, New
York, 1993.

Tully, C. J., “Position Statement on Systems
Engineering,” ATM/WP4.4/CJT7/Issue 1,
12 December 1989, Commercial in Confidence.

Warfield, John N., and Hill, Douglas J., Unified
Systems Engineering Concept, Battelle
Memorial Institute, Columbus, Ohio, 1972.

