Software Reuse in Wind Tunnel Control Systems

by Charles E. Niles

Software is an important element of wind tunnel
operations at NASA Langley Research Center
(LaRC). Reuse of wind tunnel automation software,
while limited, has produced benefits on a local scale.
Two forms of reuse have been utilized—from project
to project, and from system to system within a pro-
ject.

LaRC possesses a broad range of wind tunnels, test
facilities and laboratories which support our nation’s
aeronautics and space endeavors. The wind tunnels
enable researchers to study aerodynamics, fluid
dynamics, acoustics, heat transfer and other similar
interests in order to evaluate and improve the perfor-
mance of aircraft, missiles, jet engines, spacecraft
and various components thereof.

Although wind tunnels vary in purpose, size, shape
and operating range, similar software has been used
across facilities for data collection systems, data
reduction systems and control systems.

To simplify discussions, only closed-circuit wind
tunnels will be addressed. Essentially, a wind tunnel
is a continuous, large-diameter cylinder arranged in
an elongated, oval circuit. Air or some other medium
is moved at speeds up to Mach 1.3 around the circuit
by large fan blades. Two-thirds of the distance
around the circuit from the fan blades is a test section
in which a model is manipulated at various pitch and
roll angles to gather data on aerodynamic effects.
The model may be fitted with scale-size jet engines
which are driven through independent high pressure
air systems. Pressures inside the tunnel range from
one to several atmospheres. Temperatures range
from near absolute zero to over 150 degrees
Fahrenheit.

Wind tunnel control systems actuate subsystems to
affect fan speed, pressure, temperature, pitch, roll
and other tunnel, model or test article processes. The
dynamic interaction among tunnel processes causes

75

control system software to be moderately complex
and uniquely adapted and tuned for a facility.
Personnel safety and facility/model protection justi-
fies very reliable software which further adds to
complexity.

Automation System Projects

Between early 1985 and late 1989, the 16-Foot
Transonic received a major overhaul in which almost
every operational system was affected. The staff
assembled for this effort encompassed every imagin-
able engineering discipline—civil, electrical, struc-
tural, mechanical, controls, and software, to name a
few.

During the overhaul, the control room was modern-
ized and state-of-the-art microcontroller equipment
was installed to provide automated controls for tun-
nel (TNL), model attitude (MDL), and high pressure
air (HPA) systems which were interconnected with a
standby (STB) system via a local ethernet network.
The STB system served as a ready standby for any
one of the other three microcontroller systems. The
STB shared its chassis with a gateway (COM) which
communicated with a process monitor and control
(PMC) minicomputer via a custom parallel link. The
PMC also communicated with the facility data
acquisition system via a separate network.

The effort involved the development of over 150,000
lines of code. The TNL, MDL, HPA, and STB micro-
controller code was written in PLM, FORTRAN, and
assembly language for Intel 8086 CPUs running the
RMX-86 operating system on the Multibus I archi-
tecture. The PMC code was written entirely in FOR-
TRAN-77 for a Modcomp running the MAX IV
operating system.

Approximately 75% of the PLM source code, known
as the environment code, is identical on the TNL,
MDL, and HPA systems. The FORTRAN code,



which represents the control algorithms, is necessar-
ily unique. Overall, PLM (85%) and FORTRAN
(15%) make up the bulk of the code. Assembly lan-
guage (less than 1%) was used only when necessary.
The STB system is a composite of the environment
code and the specific portions of the TNL, MDL, and
HPA code.

The TNL, MDL, HPA, and STB systems consist of
about 30,000 source lines each, while the COM and
PMC combine for about 30,000 lines. During the
project, the environment code was developed using
the TNL system as the basis. In effect, the MDL,
HPA, and STB systems were instances of reuse with-
in the project. In addition, that portion of the COM
software which supports the local network among
the systems is identical. The COM software which
supports the parallel link and the PMC have not been
reused. ‘

A year after the 16-Foot project, two control system
upgrade projects were performed. The first project,
at the Jet Exit Test Facility, involved cloning the
HPA system, making some facility-specific changes,
and enhancing the environment code. This was a
small project, requiring one software developer. In
an extremely unusual scenario, the computer hard-
ware arrived, the control system software was
installed and checked out staticly. Several months
later, the rest of the project caught up while the soft-
ware developer was at graduate school. The author, a
veteran of the 16-Foot project, was pressed into ser-
vice to support checkout of the integrated system. As
a testament to the stability of the software, checkout
went smoothly.

The second project at the National Transonic Facility
(NTF) was more complex. This project included
newer hardware (80486 Multibus II vs. 8086
Multibus I), a newer operating system (RMX-III vs
RMX-86), a newer language (PLM-386 vs PLM),
and integration of the existing control algorithms.
Each element offered a different challenge. The first
three were straightforward—new hardware required
new drivers, a new operating system required new or
modified system calls, and a new language was
almost transparent. But the existing control algo-

76

rithms had to be repackaged to conform to the envi-
ronment-algorithm interface.

In the transition from 16-Foot to NTF, some parts of
the environment code were optimized. However,
adding generalized code which was formerly han-
dled uniquely by the microcontrollers caused the
overall size of the environment code to increase
slightly. At the end of the NTF project, 90% of the
original 16-Foot microcontroller software had been
reused with little or no modification.

In all, these three projects account for eight systems
which consist of the same environment code with
incremental improvements and optimization over
time.

Issues

The obvious benefits of reusing the environment
code include shorter product delivery time, minimal
time invested in documentation after the initial facil-
ity, and easier maintenance. Beyond the obvious ben-
efits, the environment code has provided a firm foun-
dation to which new control algorithms have been
and are being added.

It is a pity that the code has not been reused more.
Unfortunately, the large initial investment in the 16-
Foot project took its toll. When the project was com-
pleted two years late, management took a dim view
of performing a software intensive project using in-
house personnel. Thus, only selected projects were
subsequently tackled. Of course, there were other
reasons—more projects than in-house staff could
perform, urgency in obligating funding (a form of
sheer madness), the emergence of commercial appli-
cations, and a rapidly changing hardware climate.

There have been several significant impediments to
reuse. Perhaps the biggest has been individuality.
Most of NASA’s major accomplishments are attrib-
utable to individuals. NASA is full of free-thinking
scientists and engineers...and software developers
who are probably the most individualistic of all. Of
course, management traditionally has fostered an
environment of creativity and designer-preference.



So, there has been little discipline to reuse anything,
much less software, except on an individual basis.

Another impediment is organizational structure.
LaRC lags far behind the NASA space centers where
- software has been a critical element of most every-
thing ever launched. Although there are pockets of
individual software expertise scattered across LaRC,
there is no formal organization. Software reuse will
flourish more in a software engineering organization
than not. In the author’s engineering organization,
mechanical, structural, and civil disciplines are
prevalent. There are engineers who develop soft-
ware, but no software engineers. Such an environ-
ment is simply not conducive to software engineer-
ing. Without software engineering, good software
design occurs by accident. Usually, inferior design
results in inferior source code which should not be
reused.

Next Generation

Three events since mid-1994 have changed the long-
term vision of automation projects within the
author’s facility automation software development
staff. First, the staff underwent a capability self-
assessment which was facilitated by a cross-center
team of experienced software personnel and the
Navy’s software engineering group at Damn Neck,
Virginia. The results brought management attention
to issues which affected the broader organization. In
short, the staff should focus more on facility automa-
tion and less on software development.

Second, the author, long an advocate of a standard
approach to automation systems at LaRC wind tun-
nels, accepted an offer for a team from the IV&V
Center in West Virginia to conduct a domain engi-
neering effort of wind tunnel control systems. The
team, known as the Software Optimization and
Reuse Team (SORT), methodically analyzed several
wind tunnel control systems and developed an essen-

77

tial set of requirements. More recently, SORT has
developed a set of derived requirements during a
domain design. The SORT effort also influenced the
third event.

Third, the author and a systems engineer who is also
a standard product advocate have embraced a new
approach with the full support of management who
want to reduce development costs and time in the
face of budget cuts and loss of personnel.

The rapidly changing hardware climate has also been
a factor. Since Intel decided to drop support for its
Multibus II architecture (along with the RMX-III
operating system), the need for a different hardware
platform became evident. The VXI bus architecture
has been chosen in order to accommodate the instru-
mentation needs of both control and data acquisition
systems. The Lynx Operating System (LynxOS) has
been chosen to replace RMX-III. Together, they rep-
resent the standard hardware/operating system plat-
form of the next generation.

The next generation also involves a widely used
software package known as EPICS (Experimental
Physics and Industrial Control System). EPICS,
which originated within the Department of Energy,
was developed by computer scientists and physicists
for application to electron beam accelerator facili-
ties. Over the years, EPICS has been adapted to other
applications including physics labs, astronomy labs,
and jet engine test facilities. Although EPICS is mak-
ing its first appearance at LaRC, it is already
installed at over 75 sites worldwide. Oddly enough,
EPICS is used by NASA at the Canberra tracking
station.

The author’s organization believes EPICS will tran-
scend software reuse. Combined with a standard
hardware platform, EPICS means that systems can
be reused.



